diagenode

Innovating Epigenetics Solutions

WELCOME TO DIAGENODE

DNA-methylation Workshop

January 2022

DNA METHYLATION WORKSHOP Objectives

Overview of DNA methylation analysis methods

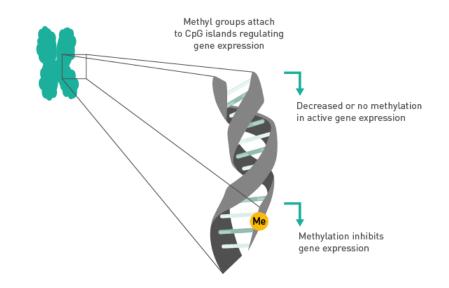
MeDIP workflow

MeDIP-qPCR MeDIP-seq

MeDIP-seq: analysis

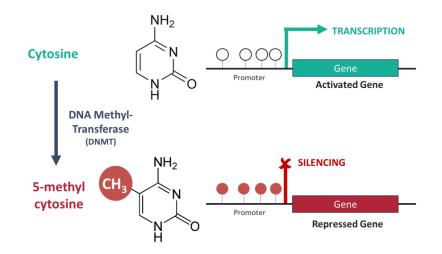
RRBS Workflow

Sample & Library preparation Early Sample Pooling Bisulfite conversion Library amplification & QC Sequencing recommendations NGS analysis



INTRODUCTION

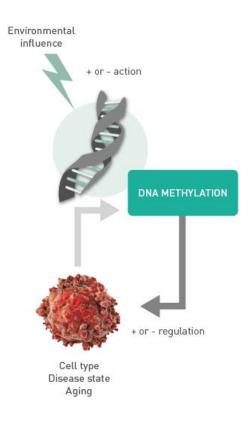
- DNA methylation is an epigenetic mechanism that occurs by the addition of a methyl (CH3) group to DNA
- Occurs at different genome locations:
 - Gene bodies
 - Promoters
 - Non-coding areas (e.g. repetitive regions, small RNAs, pericentromeric regions)
- DNA-methylation often modifies expression and function of genes



INTRODUCTION

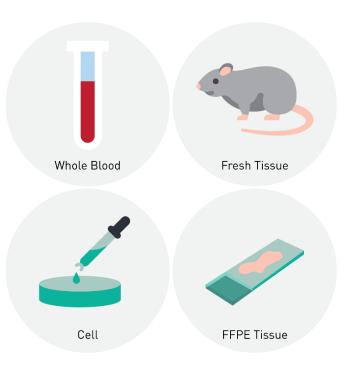
What is DNA methylation?

- The most abundant and widely characterized DNA methylation is at the 5-carbon of the cytosine ring resulting in 5-methylcytosine: 5-mC
- In somatic cells, most 5-mC occurs as paired symmetrical methylation of CpG sites
- In embryonic stem cells, a substantial amount of 5mC is also observed in non-CpG contexts

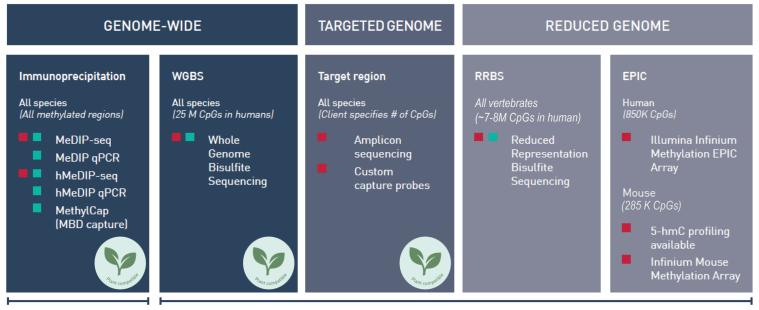


INTRODUCTION

Application to human diseases


- DNA methylation profiles is cell type and tissue specific
- Aberrations in methylation marks is implicated in various diseases.
 For example, abnormal changes in DNA methylation are markers for cancer formation:
 - Global loss of DNA methylation (hypomethylation) resulting in genomic instability
 - Increased DNA methylation (hypermethylation) in CpG-rich regions inducing transcriptional repression
- Specific DNA methylation aberrations can be used as biomarkers for disease detection

RRBS WORKSHOP


DNA methylation analysis

DNA METHYLATION WORKSHOP

DNA methylation analysis

100-500 bp resolution

Single base resolution

