

MeDIP-qPCR or MeDIP-Seq?

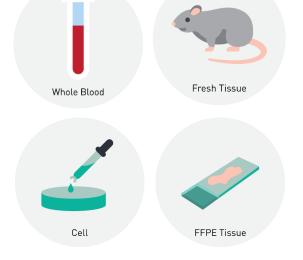
MeDIP-qPCR	MeDIP-Seq	
single-locus data requires design of loci-specific primers	genome-wide data suitable for discovery analysis	
low-cost	high sequencing cost	
fast	longer workflow (library prep, sequencing, data analysis)	

Workflow: Methylated-DNA ImmunoPrecipitation (MeDIP)

Cell lysis & **DNA** shearing MeDIP **DNA** isolation qPCR analysis **DNA** extraction xxxxxxxxx Library preparation Library amplification NGS analysis

Cell lysis & gDNA extraction

Cultured cells


Recommended kit: XL GenDNA Extraction Module (Diagenode)
For large amounts of cultured cells (~1-1.5 million)

Other template (e.g. tissue, blood)

Flexibility to use other kits
Ensure good gDNA quality and purity

Starting amount for MeDIP: 10ng - 1 μg of sheared gDNA

DNA METHYLATION WORKSHOP - MEDIP

Cell lysis & DNA extraction

DNA Shearing (Library prep.)

DNAisolation

ΙP

qPCRanalysis (Library prep.)

(NGS)

Analysis

gDNA shearing

- Shear gDNA to consistent fragment mean size
 300-400 bp for qPCR
 200 bp for NGS
- Use a good sonicator
 Recommended: <u>Bioruptor® Pico</u> (Diagenode)
- Shearing TE buffer
- Sample concentration at 2-100 ng/μl

gDNA shearing: Parameters for Bioruptor® Pico

Guide for successful gDNA shearing using the Bioruptor® Pico				
Sample type	Tube holder	Tube	Volume of sample	Shearing protocol
Low sample amounts (from 10 ng)	for 0.2ml tubes B01201144	0.2ml Bioruptor® Microtubes C30010020	50 μΙ	13 cycles [30sec ON / 30sec OFF]
Standard sample amounts	for 0.65ml tubes B01201143	0.65ml Bioruptor® Microtubes C30010011	100 μΙ	13 cycles [30sec ON / 30sec OFF]

ΙP

https://www.diagenode.com/files/protocols/protocol-dna-shearing-bioruptor-pico.pdf

Features & Benefits


- Best suited for NGS sample preparation
- Superior sample yields
- Consistent fragment size
- High reproducibility

gDNA shearing: Examples of DNA profiles

BEFORE

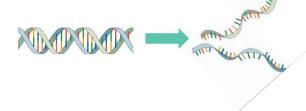
FTER

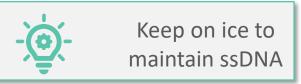
Cell lysis & DNA extraction DNA Shearing (Library prep.)

DNAisolation qPCRanalysis (Library prep.)

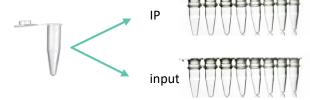
(NGS)

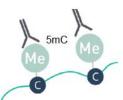
Analysis


Performing IP



1. Prepare Beads (washing and resuspension)

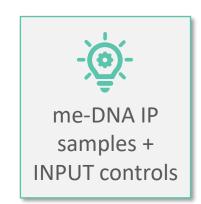

- 2. Prepare IP reaction tube
 Sheared gDNA
 Spike-in controls
 Buffers
- 3. heat-denaturation to ssDNA


4. Set aside INPUT samples

ΙP

5. Add 5mC specific antibody

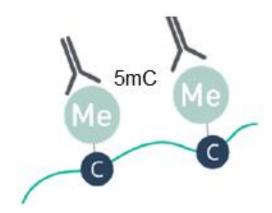
Overnight incubation on rotating wheel

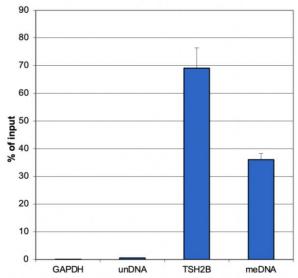

6. Remove unmethylated DNA

Wash bead/antibody/DNA complexes

Performing IP: INPUT sample

- Fraction of sheared DNA is kept aside as INPUT (~10%)
 Processed in parallel with IP-samples (without antibody)
 Recommended: 1 input for each DNA sample
- Key reference for MeDIP-qPCR and MeDIP-seq analysis
- MeDIP-qPCR: used to calculate the IP recovery (% of input)
- MeDIP-seq: mandatory for bio-informatics analysis
 Normalization for mappability of a region, to avoid duplication bias etc.




Performing IP: 5-mC antibody

Recommended antibody:

5-methylcytosine (5-mC) Antibody - clone 33D3 (Diagenode)

IΡ

Performing IP: Spike-in controls

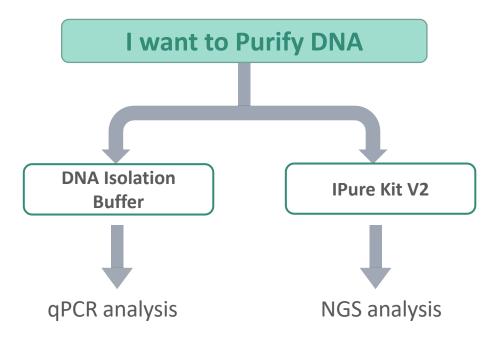
- External DNA spike-in controls & primer pairs
 - Synthetic sequence without homology to any model species
 - No interference with DNA sample of interest
 - Add directly to each sheared gDNA sample before IP
 - Not sequenced but use as control during qPCR analysis
- Methylated (positive) spike-in: confirm overall efficiency of IP workflow
- Unmethylated (negative) spike-in: measure non-specific IP background
 Recommended kit: <u>DNA methylation control package V2</u> (Diagenode)

Cell lysis & DNA extraction

DNA Shearing (Library prep.)

DNAisolation

ΙP


qPCRanalysis (Library prep.)

(NGS)

Analysis

DNA isolation

qPCR analysis: QC check

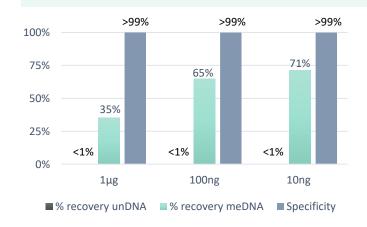
IP QC check using qPCR on the spike-in controls

1. % recovery

$$= 2^{[Ct (INPUT) -3.32 - Ct(IP)]} * 100$$

= log 10/log 2 =, where 10 is dilution factor IP/INPUT

2. Enrichment

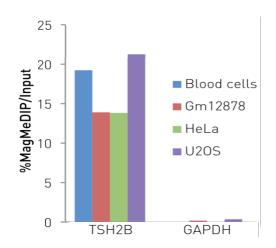

$$= \frac{\% \ recovery \ meDNA}{\% \ recovery \ unDNA}$$

3. Specificity

$$= 1 - \frac{1}{Enrichment}$$

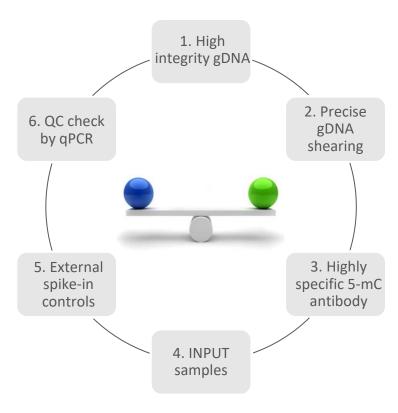
Success criteria

- Methylated spike-in recovery > 20%
- Unmethylated spike-in recovery < 1%
- Spike-in IP specificity > 99%

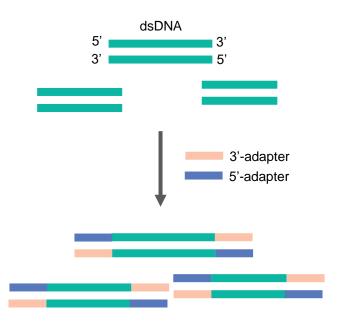

qPCR analysis: QC check & analysis

 Primer pairs for Positive/Negative control regions within the DNA sample of interest

QC check during qPCR & NGS analyses


- Available <u>primer pairs</u> for human/mouse/rat
 - Positive TSH2B locus: methylated region
 - Negative GAPDH locus: unmethylated region
- Or design your own qPCR primers

Summary – Tips for Good MeDIP-qPCR Assay


Workflow: Methylated DNA ImmunoPrecipitation (MeDIP)

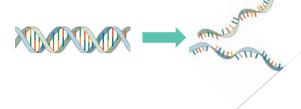
Cell lysis & **DNA** shearing MeDIP **DNA** isolation qPCR analysis **DNA** extraction xxxxxxxxx Library preparation Library amplification NGS analysis

Library preparation: Adaptor ligation before IP

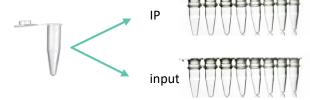
- Critical step for successful sequencing
- Adaptor ligation on dsDNA before denaturation and IP
- Recommended kit: <u>iDeal DNA IP Library Preparation Kit</u>
 - Fully optimized & validated for MeDIP-seq
 - Low input (from 10ng DNA)
 - High library yield

••••

MeDIP-seq: Performing IP

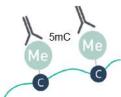

Keep on ice to maintain ssDNA

1. Prepare Beads (washing and resuspension)



2. Prepare IP reaction tube
Adaptor-ligated DNA
Spike-in controls
Buffers

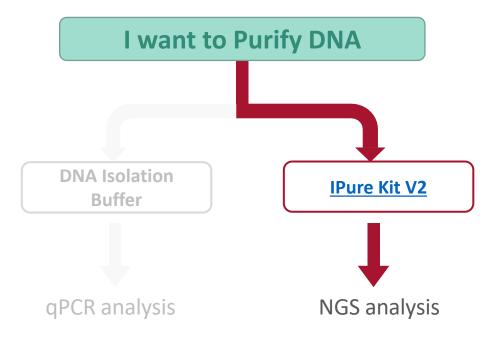
3. Heat-denaturation to ssDNA



4. Set aside INPUT samples

5. Add 5mC specific antibody

Overnight incubation on rotating wheel



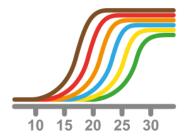
6. Remove unmethylated DNA

Wash bead/antibody/DNA complexes

MeDIP-seq: DNA isolation

Library preparation: Optimal PCR cycles

Minimization of PCR cycles


- Limits the risk of introducing bias during PCR
- Minimizes # of PCR duplicates

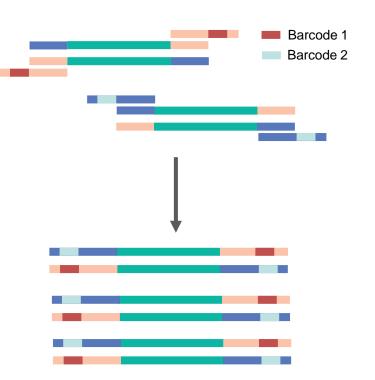
• Optimal cycle number = Ct (rounded up) + 1

e.g. $Ct = 6.82 \rightarrow 8$ amplification cycles

Cell lysis & DNA extraction

DNA Shearing Library prep.

ΙP


DNAisolation qPCR analysis Library prep. NGS

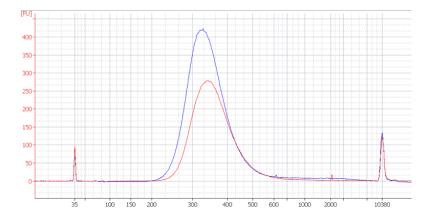
Analysis

Library preparation: Amplification

- Recommended kit: <u>iDeal Unique Dual Indexes for Illumina</u>
 - Library multiplexing
 - Unique i5 and i7 barcodes
 - Filtering of index-hopping events (especially on NovaSeq)

Library preparation: Pooling & quality controls

Determine library size


- Bioanalyzer or Fragment Analyzer

• Quantify

- Qubit
- Convert ng/μl to nM by average library size

Dilute and pool normalized libraries

- Same size for best clustering

MeDIP-seq: Sequencing Settings

Read length

Paired-end 50 bp

Sequencing depth

- Mainly set by genome size, samples and flow cell type
- 50 M for genome-wide DNA methylation analysis (human & mouse)
- Use same depth for input

Replicates

- Biological duplicates are minimum for most bioinformatic analyses
- Increased replicate number will improve sensitivity of the downstream analysis

Input sequencing

- One input per sample is gold standard
- Pooling inputs from replicates can often be considered

Cell lysis & DNA extraction

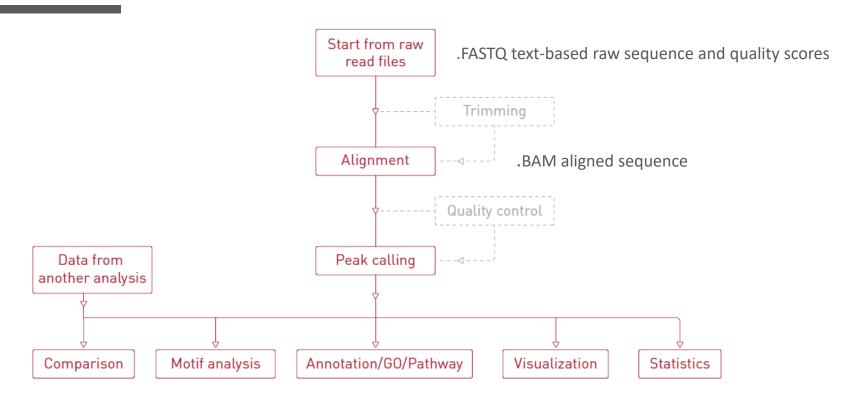
DNA Shearing Library prep.

DNAisolation

ΙP

qPCR analysis Library prep. NGS

Analysis


MeDIP-seq: Analysis

Bioinformatician	R	https://bioconductor.org/packages/release/bioc/html/MEDIPS.html	
	free-ware and online tool kits	www.bioinformatics.babraham.ac.uk/projects/seqmonk/	
		biit.cs.ut.ee/gprofiler/gost	
Wet-lab expert with free time	standard bioinformatic services	https://www.diagenode.com/en/categories/Services Comprehensive DNA methylation and bioinfo services	
	free-ware and online tool kits	www.bioinformatics.babraham.ac.uk/projects/seqmonk/ Initial & advanced data analysis, genome browser, graphical presentation of data	
		https://biit.cs.ut.ee/gprofiler/gost Functional profiling tool	
No expertise or no free time	advanced bioinformatic services	https://www.diagenode.com/en/categories/Services Comprehensive DNA methylation and bioinfo services	

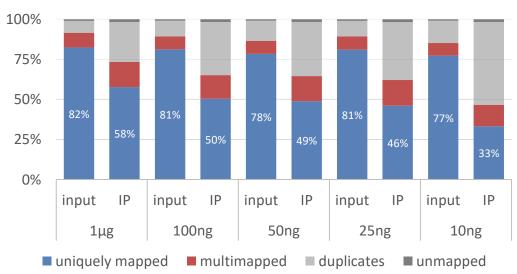
Analysis

MeDIP-seq: Analysis

Cell lysis & DNA extraction

DNA Shearing Library prep.

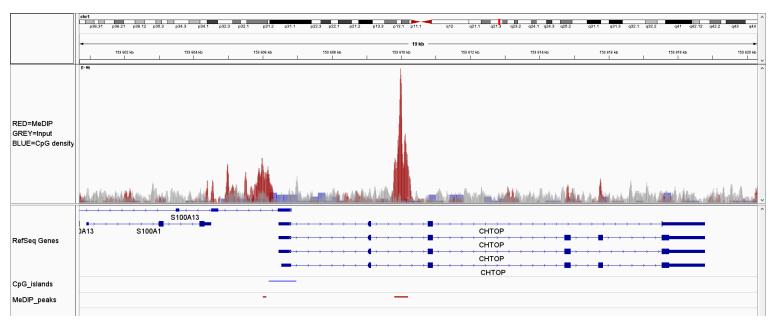
IP


DNAisolation qPCR analysis Library prep. NGS

Analysis

MeDIP-seq: Example of results

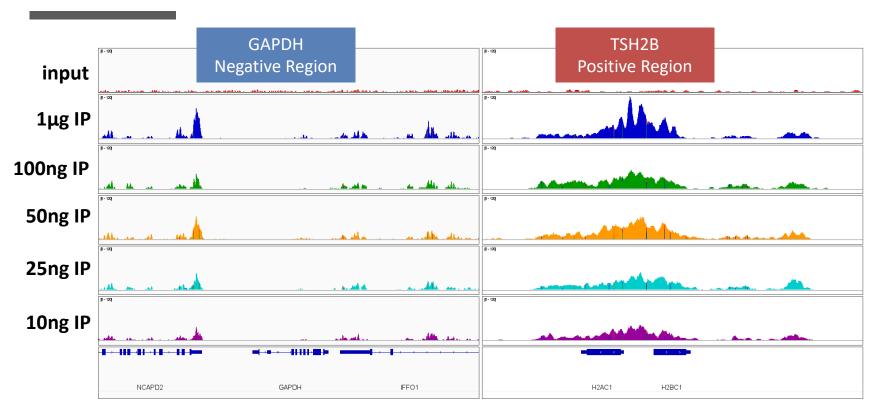
Uniquely mapped


- = reads after mapping
- + duplicates removal
- + multi-mappers removal
- = reads for methylation analysis

Sample: Human whole blood genomic DNA Starting amount: 1 µg; 100 ng; 50 ng; 25 ng; 10 ng

Sequencing: PE 50 bp on Illumina Novaseq

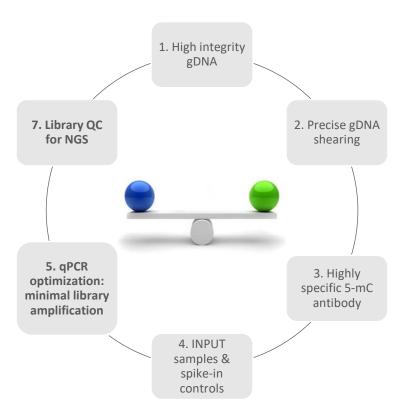
Bioinformatics analysis: MeDIPS


MeDIP-seq: Enrichment visualization

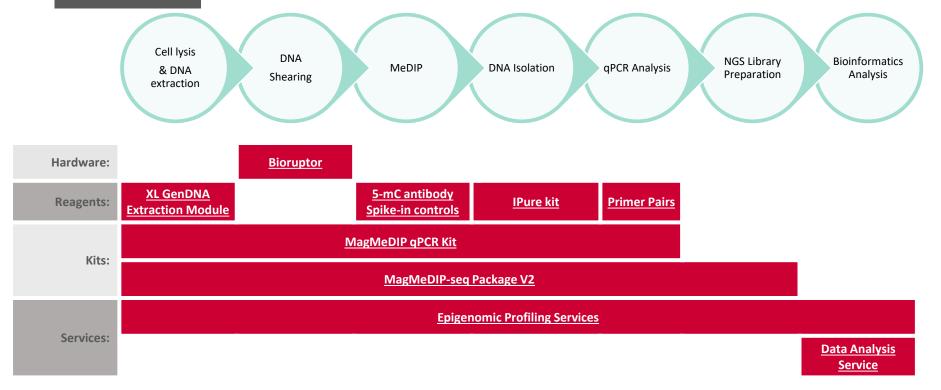
Enrichment of me-DNA compared to INPUT sample

MeDIP-seq: Coverage profiles

MeDIP-seq: Peak calling


Fraction of reads in peaks over uniquely mapped reads (%)

Specific me-DNA enrichment compared to reference genome


Summary – Tips for Good MeDIP-seq Assay

Summary – Diagenode Support

DNA METHYLATION WORKSHOP - MEDIP

Applications

MeDIP-qPCR on FFPE samples

DOI 10.1007/s12035-016-0345-x

Evaluating the Feasibility of DNA Methylation Analyses Using Long-Term Archived Brain Formalin-Fixed Paraffin-Embedded Samples

Stine T. Bak1 · Nicklas H. Staunstrup 1,2,3,4 · Anna Starnawska 1,3,4 · Tina F. Daugaard 1 · Jens R. Nyengaard 5.6 · Mette Nyegaard 1.3 · Anders Borglum 1.3.4.7 · Ole Mors 3.4.7 · Karl-Anton Dorph-Petersen 2,6,8 · Anders L. Nielsen 1,3

Received: 3 August 2016 / Accepted: 5 December 2016

MeDIP-qPCR on cfDNA

Winter 2017, Vol 6, No 1

MeDIP Real-Time qPCR has the Potential for Noninvasive Prenatal Screening of Fetal Trisomy 21

Mohammad Kazemi 1,2,3, Mansoor Salehi 1,2,3, Maiid Kheirollahi 3

- 1. Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- 2. Medical Genetic Center of Genome, Isfahan, Iran.
- 3. Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.

MeDIP-seq on plants

The methylation pattern of DNA and complex correlations with gene expressions during TuMV infection in Chinese cabbage

J. YU¹, L.-W. GAO¹, Y. YANG¹, C. LIU¹, R.-J. ZHANG¹, F.-F. SUN², L.-X. SONG³, D. XIAO¹, T.-K. LIU1, X.-L. HOU1, and C.-W. ZHANG1*

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China¹ Naniing Vegetable Science Research Institute, Naniing, 210095, P.R. China2

Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, P.R. China3

C Springer Science+Business Media New York 2016

MeDIP-seq on cfDNA from plasma...

https://doi.org/10.1038/s41586-018-0703-0

Sensitive tumour detection and classification using plasma cell-free DNA methylomes

Shu Yi Shen^{1,2}, Rajat Singhania^{1,2}, Gordon Fehringer^{2,2}, Ankur Chakravarthy^{1,2}, Michael H. A. Roehri^{1,3,4}, Dianne Chadwick¹, Philip C. Zuzarte², Ajeelt Borgida², Ting Iling Wang^{2,4}, Tiantian Li², Olena Kis², Zhen Zhao², Ayard Roulos², Jessica Liu⁴, Mark Mansour⁴, John D. McPherson⁷, Catherine O'Brien¹, Natasha Leighi¹, Philippe L. Bedard¹, Neil Fleshner¹, Geoffrey Liu^{1,4,8}, Mark D. Minden¹, Steven Gallinger^{9,10}, Anna Goldenberg¹¹, Trevor J. Pugh^{1,4}, Michael M. Hoffman^{1,4,11}, Scott V. Bratman^{1,4}, Rayjean J. Hung^{2,8} & Daniel D. De Carvalho^{1,4}

and urine

Check for updates.

Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes

Pier Vitale Nuzzo 01.2.316, Jacob E. Berchuck 01.236, Keegan Korthauer 4.536, Sandor Spisak 2.16, Amin H. Nassar 12, Sarah Abou Alaiwi 2, Ankur Chakravarthy, Shu Yi Shen 126, Ziad Bakouny 61, Francesco Boccardo 3.7, John Steinharter1, Gabrielle Bouchard1, Catherine R. Curran1, Wenting Pan¹, Sylvan C. Baca^{1,2,8}, Ji-Heui Seo^{1,2}, Gwo-Shu Mary Lee^{1,2}, M. Dror Michaelson^{6,9} Steven L. Chang¹⁰, Sushrut S. Waikar^{11,12}, Guru Sonpavde¹, Rafael A. Irizarry^{13,14}, Mark Pomerantz^{1,2}, Daniel D. De Carvalho 6,15,17, Toni K. Choueiri 6,18,17 ≥ and Matthew L. Freedman 1,2,8,17 ≥

MeDIP-seg on oysters

Dynamics of DNA methylomes underlie oyster development

Guillaume Riviere 1,2 *, Yan He3*, Samuele Tecchio 1,2*, Elizabeth Crowell 1,2, Michael Gras 1,2, Pascal Sourdaine 1,2, Ximing Guo 4, Pascal Favrel 1,5

- 1 Normandy University, Caen, France, 2 Université de Caen Normandie, UMR BOREA MNHN, UPMC. UCBN, CNRS-7208, IRD-207, Caen, France, 3 Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China, 4 Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States of America
- These authors contributed equally to this work.
- * guillaume, riviere@unicaen.fr